首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   39篇
  国内免费   3篇
测绘学   12篇
大气科学   35篇
地球物理   235篇
地质学   211篇
海洋学   41篇
天文学   92篇
综合类   6篇
自然地理   33篇
  2023年   1篇
  2022年   10篇
  2021年   13篇
  2020年   25篇
  2019年   19篇
  2018年   33篇
  2017年   27篇
  2016年   40篇
  2015年   28篇
  2014年   30篇
  2013年   30篇
  2012年   40篇
  2011年   53篇
  2010年   31篇
  2009年   35篇
  2008年   34篇
  2007年   24篇
  2006年   39篇
  2005年   23篇
  2004年   27篇
  2003年   16篇
  2002年   16篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1980年   1篇
  1979年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有665条查询结果,搜索用时 937 毫秒
101.
Correlations of seismic noise are commonly used to monitor temporal variations of relative seismic velocity in period ranges from 1 s up to 100 s. Of particular interest is the detection of small changes in the order of 0.01–0.1 % in propagation speeds. Measuring such small differences can, however, be significantly biased by temporal variations in the properties of the noise sources within the corresponding frequency band. Using synthetic data, we show that apparent relative velocity variations might appear only due to changes in the amplitude and frequency content caused by source variations. Removing such unwanted effects by applying narrow bandpass filters in the preprocessing restricts the high-resolution analysis of any signal due to Gabor’s uncertainty limit, i.e., the correlation function suffers a limited resolution to time delay estimates for small correlation times, low-frequency ranges, and in narrow frequency bands. Better understanding of spatiotemporal noise source properties and the theoretical limitations of time–frequency analysis is critical for accurate and reliable passive monitoring.  相似文献   
102.
European researchers and seismic networks are active in developing new approaches to earthquake early warning (EEW), implementing and operating test EEW systems, and in some cases, offering operational EEW to end users. We present the key recent developments in EEW research in Europe, describe the networks and regions where EEW is currently in testing or development, and highlight the two systems in Turkey and Romania that currently provide operational systems to a limited set of end users.  相似文献   
103.
104.
105.
The relevance of geographic information has become an emerging problem in geographic information science due to an enormous increase in volumes of data at high spatial, temporal, and semantic resolution, because of ever faster rates of new data capturing. At the same time, it is not clear whether the concept of relevance developed in information science and implemented for document-based information retrieval can be directly applied to this new, highly dynamic setting. In this study, we analyze the criteria users apply when judging the relevance of geographic entities in a given mobile usage context. Two different experiments have been set up in order to gather users' opinions on a set of possible criteria, and their relevance judgements in a given scenario. The importance ascribed to the criteria in both experiments clearly implies that a new concept of relevance is required when dealing with geographic entities instead of digital documents. This new concept of ‘Geographic Relevance’ is highly dependent on personal mobility and user's activity, whose understanding may in turn be refined by the assimilation of ‘Geographic Relevance’ itself.  相似文献   
106.
Stable isotopes (13C and 15N) are widely applied in studies of trophic links. We used this method to investigate the contribution of aquatic and terrestrial prey to the diet of riparian predatory arthropods in two mountain headwater streams in Colorado, USA. Aquatic and terrestrial prey and riparian predators were collected during summer 2009. To evaluate the reliability of conclusions based on stable isotope ratios, we compared the isotopic signatures of aquatic larval and terrestrial adult stages of three abundant stream insect species and assessed variation in mixing model estimates for spider diet composition under varying assumptions for trophic fractionation. Adult isotopic signatures of some aquatic prey species were indistinguishable from those of prey species with exclusively terrestrial life histories (stoneflies: 13C and 15N, chironomids: 13C). Other prey had distinctly aquatic isotopic signatures as both larvae and adults (a mayfly and a caddisfly). There was no evidence that prey with aquatic isotopic signatures contributed to the diet of the spiders near one stream. For the other stream, mixing model analysis suggested that chironomids were included in the diets of lycosid, linyphiid and liocranid spiders. Reliable estimates of the contributions of prey sources were compromised by the sensitivity of mixing models to assumptions on trophic fractionation and the presence of “isotopically cryptic” prey. This study emphasizes the importance of supporting isotope-based studies on cross-boundary trophic links with data on isotopic shifts in prey with complex life cycles and assessment of fractionation rates specific to the study system.  相似文献   
107.
Abstract

In the context of ageostrophic theory in a homogeneous ocean, a nondimensional number is determined which corresponds to the Ursell number for long gravity waves. It is defined as Q = NL 2/h 3, where N is the amplitude of the wave travelling along the long length-scale direction, L is its length and h (which for gravity waves is the water depth) is given by h=(l 4 f 2/g)1/3. where l is the short length-scale, f the Coriolis parameter and g the acceleration due to gravity. The physical meaning of Q is as follows: if Q? O(1) the free evolution of the wave is linear and weakly dispersive, if Q = O(1) nonlinear and dispersive effects balance out and finally if Q ?O(1) the evolution is nonlinear and non-dispersive. Expressions for the time scales for the development of dispersive and nonlinear effects are also determined. These results apply to topographically trapped waves, namely barotropic continental shelf and double Kelvin waves travelling along a rectilinear topographic variation.  相似文献   
108.
Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid.  相似文献   
109.
Rock and stepped gabion weirs are peculiar hydraulic structures that received relatively little attention in technical literature. Nevertheless, they can be successfully used for river restoration instead of traditional hydraulic structures. They have the advantage of being elastic structures and to preserve the natural environment. They can easily adapt to the in situ conditions and can be effortlessly modified according to the different hydraulic or geometric conditions which can occur in a natural river. The present study aims to analyze the effects of their presence on flow pattern and on the scour hole occurring downstream. The analysis involved scour processes, hydraulic jump types, stilling basin morphology and flow patterns. Two different hydraulic jump types were distinguished and classified. It was shown that the flow regime deeply influences the scour process, which evolves much more rapidly when a Skimming Flow regime takes place. Empirical relationships are proposed to evaluate maximum scour depth, maximum axial length, and non dimensional axial profiles.  相似文献   
110.
Microwave radiances from passive polar-orbiting radiometers have been, until recently, assimilated in the Met Office global numerical weather prediction system after the scenes significantly affected by atmospheric scattering are discarded.Recent system upgrades have seen the introduction of a scattering-permitting observation operator and the development of a variable observation error using both liquid and ice water paths as proxies of scattering-induced bias. Applied to the Fengyun 3 Microwave Temperature Sounder 2(MWTS-2) and the Microwave Humidity Sounder 2(MWHS-2), this methodology increases the data usage by up to 8% at 183 GHz. It also allows for the investigation into the assimilation of MWHS-2 118 GHz channels, sensitive to temperature and lower tropospheric humidity, but whose large sensitivity to ice cloud have prevented their use thus far. While the impact on the forecast is mostly neutral with small but significant shortrange improvements, 0.3% in terms of root mean square error, for southern winds and low-level temperature, balanced by 0.2% degradations of short-range northern and tropical low-level temperature, benefits are observed in the background fit of independent instruments used in the system. The lower tropospheric temperature sounding Infrared Atmospheric Sounding Interferometer(IASI) channels see a reduction of the standard deviation in the background departure of up to 1.2%. The Advanced Microwave Sounding Unit A(AMSU-A) stratospheric sounding channels improve by up to 0.5% and the Microwave Humidity Sounder(MHS) humidity sounding channels improve by up to 0.4%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号